OPTIMIZATION OF CONDUIT HEATING

B. N. Tokarskii UDC 536.244:621,643,2

We investigate the problem of the change, with time, in the temperature of a heating medium,
this change corresponding to the minimum duration of conduit heating under the condition that
the thermal stresses in the wall do not exceed permissible limits,

When actuating powerful high-energy units with straightpass boilers, from the instant of burner igni~
tion to the entry of the steam into the turbine, the rate of rise in the steam temperature is limited by the
thermal stresses within the wall of the steam conduit. To reduce the duration of the actuation process and
the consumption of fuel, it is advisable to maintain the stresses within the steam conduit at permissible
levels throughout the entire heating period. Usually, the entire range of variation in T is broken down into
2-3 intervals, for each of which a permissible value of dT/dr is specified. The latter value is set with
consideration of the relationship between the permissible stresses and the temperature, If is assumed in
the determination of the thermal stresses that there isaquasisteady temperature field within the wall of the
steam conduit [1].

It follows from the data in [2] that to establish a temperature field that is close to the quasisteady, we
need a sufficiently large interval of time that is commensurate with the duration of conduit heating. This
conclusion is in agreement with the experimental data of [3]. Since the stresses in the prequisisteady
regime are smaller than in the quasisteady regime, the latter curves of variation in T cannot be regarded
as optimum.

For the case a = const, an approximate method is proposed in [2] for the plotting of the function T
= T(r) for which the maximum thermal stresses are constant throughout the entire heating period. Below
we present the solution for the problem of optimizing the heating of a thick-walled conduit, in more general
formulation: it is assumed that o = const and |o | = const.

In firing up a straightpass boiler an attempt is made to maintain specific relationships between tem-
perature, pressure, and flow rate for the steam being produced, so that for ¢ we can specify the rela-
tionship

a=a(T, %) (1)
We will also assume that when r = r, there is no. transfer of heat.

Comparison of oy and 0y, with the permissible values is accomplished for r = r; and r = ry, where the
thermal stresses attain their greatest values (op; = ory = 0). Since other loading factors (bending, pres-
sure, etc.) are taken into consideration in the choice of [¢], for the inside and outside surfaces the values
of [o] are assumed to be different. The temperature difference across of the thickness of the wall is usually

so small that the mechanical properties of the steel vary only slightly in the temperature range from t; to
ty. We can thus assume that

ol = fi Gy)s
[0]s = f3 (5.

Assuming that 8, E, and u are functions of tyy, we can determine [4] the thermal stresses in an in-
finite hollow cylinder for t = t(r) from the following formulas:

2

Polzunov Central Boiler Turbine Institute, Leningrad. Translated from Inzhenerno-Fizicheskii
Zhurnal, Vo.16, No.3, pp.489-493, March, 1969, Original article submitted May 29, 1968,

© 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. Al rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

339



O == Og1 =

B )+ bl
[—p (3)
BE

Ogp = Ob2 == T—u [— 2(ry) + £ )

Since 0@ = 09y and 0@, = 0g,, for determinacy we will subsequently assume that fi(t,) and f,(t5y)
are the permissible values, respectively, for og, and og,.

First let us consider the problem of plotting the function q = q(7), for which one of the equations in
(2) is satisfied.

Figure 1 shows the curves for the variation in the dimensionless thermal stresses when q = 1.

The distribution of temperature through the thickness of the wall — required for the determination of
the stresses from formulas (3) — was determined by calculation with a Ural-2 digital computer, in accord-
ance with a program developed at the Polzunov Central Boiler Turbine Institute, This program provides
a solution for the differential heat-conduction equation by a finite-difference method involving application of
the pivot method to solve the system of equations (see, for example, {1]).

1t follows from the curves in Fig. 1 that unlike the case of T /dT=const whenq =const the state that is close
to the quasisteady is established within a brief time interval that is 2-3 orders of magnitude smaller than
the duration of the heating.

With a variable heat flow

%mn=q@smn+g o
0

y S(r, T — 1) d,. (4)

The integral in the right-hand member of (4) can be presented in the form of the sum of the integrals
with limits from 0 to 7 — A7 and from 7— At to 7. The value of A7t is set small, but so that

ShAy (5)
S(r, )
When 1 < AT we will assume that 1(0, 71— A7 = 0.
In turn, I(0, 7— AT)can be presented in the form
j=n

10, v — A1) = 2 1 (v Thaahs

=l
where T,y = 7— A7; 74 = 0 and the values of 7j are chosen so that when 7j < 7 < 75,4 the quantity dq/dr,
does not change sign,
Applying the theorem of the average and formula (5), we find that
1(0, T — A7) =[qg (v — A1) — g (O)] S (r; ).
Analogously,
I(x— A1, 1) =8l () — gt —ADIS(r, ),
where 0 < 6 <1,
Thus, when 7 > AT
o, (1) ={g(x — A7) + 8[g (1) —g (v =AY} S, ). (6)
We will heat the conduit so that at any instant of time

Lok )
Six
Within a small time interval A7 the value of tgy varies insignificantly in comparison with the initial
and final temperatures, Therefore, for the steels that are usually employed the increase in the permis-
sible stresses during the period At will be small in comparison with the magnitude of the stresses at the
instant 7.

q:
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Fig.1. Stresses in a hollow cylinder at constant density for the heat flow
through the inside surface: 1) for ry/ry = 1; 2) for ro/r; = 2.

Fig. 2. Curves for the changé in the temperature of the heating steam (T
in °C and 7 in sec): 1) when dT/dT = const; 2) according to the proposed
method.

Bearing this in mind, we find from (6) and (7) that

Ot %_[Gh- ' o (8
Analogously, when
— [l (9)
s
Opz = [O]. (10)

On the basis of these results, we can recommendthe following approximate method of plotting the
function T = T(7).

1. We determine the constant heating rate dtgy/dr for the conduit in the case in which g = 1.

2. With the formulas for the determination [2] of the thermal stresses in the quasisteady regime

t
4r3ln L
2 2
dt
o= — e 2 (3—-% e [

I—p 8a r ri—r? dt
4rfln—t1-
) _____Bé’:____f_g_(l_%_i_}______fz_“ ﬂél’_.
27 1—p 8 ra ry—r dr

we calculate Si and S,
3. From formulas (7) and (9), and from the specified functions (2), we plot the curve for q = q(tgy).
4. With the aid of the results derived in item 3, we determine the function tgy = tyy(7).

5. We plot the curve forthe change in the temperature of the metal, for the case in which r = r{, on
the basis of the formula

(1) =, (0) + i"—é}(l — 1) Spe (11)

6. By means of the solution for the system of equations (1) and (11) for T at various instants of time,
we plot the sought curve for T = T (7).
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Let us consider an example, In a conduit made of 15Kh1M1F" steel with dimensions 2r; = 0.155 m and
2r, = 0.245 m, and with an initial temperature of t = 100°C we have to raise the temperature of the steam
from 100 to 300°C to feed it into the turbine. With a change in the temperature of the steam at a constant
rate the permissible value of dT/dr = 0.08 deg C/sec, [0]; =2.1-107 N/m, and ¢ = 116.3 W/m -deg. We
see from the curves in Fig. 2 that because of the smallness of the selected value of ¢ — corresponding to
actuation of the unit with sliding parameters — in the case under consideration, with use of the proposed
method, the time for the heating of the conduit can be reduced by a factor of 10.

NOTATION
T is the time;
Fo is the Fourier number;
r is a coordinate;
T is the temperature of the heating medium;
t is the conduit temperature;
Ty i
tay = 2 [ trdr/r? — r};
q i is the density of the heat flow through the inside surface of the conduit;
o is the permissible stress;
Oy, Oz, and op are the tangential, axial, and radial stresses;
S=0yp forgq=1;
Seo= 8 when 7 = oo
E is the modulus of elasticity;
B is the coefficient of linear expansion;
i is the Poisson coefficient;
a is the coefficient of thermal diffusivity;
o is the heat-transfer coefficient;
0<8<];
¢
I(b, o = [ (da/d7yS(r, T
b
- 'ro)d‘ro-

Subscripts and Superscripts

1 is the inside surface;
2 is the outside surface.
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